
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2018 1

GapFlyt: Active Vision Based Minimalist
Structure-less Gap Detection For Quadrotor Flight

Nitin J. Sanket∗, Chahat Deep Singh∗, Kanishka Ganguly, Cornelia Fermüller, Yiannis Aloimonos
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Figure 1. Different parts of the pipeline: (a) Detection of the unknown gap using active vision and TS2P algorithm (cyan highlight shows the path followed
for obtaining multiple images for detection), (b) Sequence of quadrotor passing through the unknown gap using visual servoing based control. (The blue and
green highlights represent the tracked foreground and background regions respectively. All the images in this paper are best viewed in color.)

Abstract—Although quadrotors, and aerial robots in general,
are inherently active agents, their perceptual capabilities
in literature so far have been mostly passive in nature.
Researchers and practitioners today use traditional computer
vision algorithms with the aim of building a representation of
general applicability: a 3D reconstruction of the scene. Using this
representation, planning tasks are constructed and accomplished
to allow the quadrotor to demonstrate autonomous behavior.
These methods are inefficient as they are not task driven and
such methodologies are not utilized by flying insects and birds.
Such agents have been solving the problem of navigation and
complex control for ages without the need to build a 3D map
and are highly task driven.

In this paper, we propose this framework of bio-inspired
perceptual design for quadrotors. We use this philosophy to
design a minimalist sensorimotor framework for a quadrotor to
fly through unknown gaps without an explicit 3D reconstruction
of the scene using only a monocular camera and onboard sensing.
We successfully evaluate and demonstrate the proposed approach
in many real-world experiments with different settings and
window shapes, achieving a success rate of 85% at 2.5ms−1 even
with a minimum tolerance of just 5cm. To our knowledge, this is
the first paper which addresses the problem of gap detection of
an unknown shape and location with a monocular camera and
onboard sensing.

Index Terms—Active Vision, Gap Detection, Quadrotor, Visual
Servoing, Deep Learning in Robotics and Automation, Optical
Flow, Tracking, Collision Avoidance, Computer Vision for
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SUPPLEMENTARY MATERIAL

The supplementary hardware tutorial, appendix, code and
video are available at prg.cs.umd.edu/GapFlyt.html.

I. INTRODUCTION AND PHILOSOPHY

THE quest to develop intelligent and autonomous
quadrotors [1]–[3] has taken a center stage in the recent

years due to their usefulness in aiding safety and intuitive
control. To achieve any form of autonomy, quadrotors need to
have perceptual capabilities in order to sense the world and
react accordingly. A generic and fairly common solution to
providing perceptual capabilities is to acquire a 3D model of
its environment. Creating such a model is very useful because
of its general applicability – one could accomplish many tasks
using the same model. The process of obtaining a 3D model
of the environment using onboard sensing and a myriad of
different sensors has gained momentum in the last few years
[4]. Sensors like the LIDAR, RGB-D and stereo camera cannot
be used on a small quadrotor due to their size, weight, and
power limitations. This constrains us to a monocular camera
along with the already present onboard inertial sensor (IMU)
and many algorithms have been developed based on the same
principle [5] [6].

Instead of attempting to recover a 3D model of the scene,
we want to recover a “minimal” amount of information
that is sufficient to complete the task under consideration.
We conceptualize an autonomous quadrotor as a collection
of processes that allow the agent to perform a number of
behaviors (or tasks) (Table I). At the bottom of the hierarchy
is the task of kinetic stabilization (or egomotion). Next comes
the ability for obstacle avoidance, where the obstacles could

prg.cs.umd.edu/GapFlyt.html
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Table I
MINIMALIST DESIGN OF AUTONOMOUS QUADROTOR (DRONE) BEHAVIOURS.

Competence Passive Approach Active and Task-based Approach

Kinetic stabilization Optimization of optical flow fields Sensor fusion between optical flow and IMU measurements
Obstacle avoidance Obtain 3D model and plan accordingly Obtain flow fields and extract relevant information from them
Segmentation of independently moving objects Optimization of flow fields Fixation and tracking allows detection
Homing Application of SLAM Learn paths to home from many locations
Landing Reconstruct 3D model and plan accordingly Perform servoing of landing area and plan appropriate policy
Pursuit and Avoidance Reconstruct 3D model and plan accordingly Track while in motion
Integration: Switching between behaviors Easy: The planner interacts with the 3D model Hard: An attention mechanism on ideas switching between behaviors

be static or dynamic, followed by ability to perform homing,
i.e., to find a specific location in an environment. Last in the
hierarchy comes the ability to land (on a static or a dynamic
surface) and the ability to pursue, or escape from, another
agent. This hierarchy of competences, with each competence
needing the one before it, constitutes the sensorimotor system
of the quadrotor agent. These behaviors can be accomplished
without an explicit 3D reconstruction because of the “active”
nature of the quadrotor. The quadrotor can perform maneuvers
and control the image acquisition process, thus introducing
new constraints that were not there before - this is called
“active” vision [7]–[9]. This methodology was inspired by the
fruit fly [10]. Prior research has shown that fruit flies, and
other insects [11] [12], do not perceive depth directly. It is
achieved by a balance of active and exploratory procedures.
In this paper, we focus on the second competence of obstacle
avoidance. Specifically, the question this paper deals with
is: “Can a quadrotor manage to go through an arbitrarily
shaped gap without building an explicit 3D model of a scene,
using only a monocular camera?” We develop the visual
mathematics of the solution, evaluate and demonstrate the
proposed approach in many real experiments with different
settings and window shapes.

Traditional computer vision based approaches such as sparse
or dense reconstruction [13]–[16] have been used to obtain
a 3D structure of the scene over which sophisticated path
planners have been used to plan collision free paths. Lately,
deep-learning driven approaches have taken a center stage
in solving the problem of fast collision avoidance and safe
planning on quadrotors [17]. Most of these neural network
approaches compute Fast Fourier Transforms (FFTs) for
large filter sizes [18]. Such approaches can be processed
on a Field-Programmable Gate Array (FPGA), rather than a
Graphical Processing Unit (GPU) to drastically improve the
computation performance and power efficiency [19] [20].

To our knowledge, this is the first paper which addresses
the problem of gap detection with a monocular camera and
onboard sensing. However, the problem of going through
gaps has fascinated researchers from many years and some of
the recent works which present algorithms for planning and
control can be found in [21] [22]. Some of the works which
paved way to the bio-inspired approach used in this paper can
be found in [23]–[26].

The key contributions of this paper are given below:
• Active vision based structure-less minimalist gap

detection algorithm – Temporally Stacked Spatial
Parallax or TS2P (Fig. 1a).

• Visual servoing on a contour for the quadrotor to fly
through unknown gaps (Fig. 1b).

A. Organization of the paper:
Sec. II presents the detection algorithm of a gap in an

arbitrary shaped window using Deep Learning based optical

flow and the role of active vision in such algorithms. Sec.
III describes the algorithm used for tracking the gap/safe
point and the quadrotor control policy. Sec. IV illustrates
the experimental setup and provides error analyses and
comparisons with traditional approaches. We finally conclude
the paper in Sec. V with parting thoughts on future work.

B. Problem Formulation and Proposed Solutions
A quadrotor is present in a static scene (Fig. 2), where the

absolute depth of each point as ‘seen’ from the camera can
be modelled as an univariate bimodal gaussian distribution.
The location at which there is a maximum spatial depth
discrepancy between pixels (projected point) is defined as
the Contour (C) of the opening. In this paper, the words
boundary, gap, window or opening refer to the same entity
and will be used interchangeably. Any pixel close to the
mode corresponding to the lower depth value is defined as
the Foreground (F) and similarly that corresponding to the
higher depth value is defined as the Background (B). A simple
way of solving the problem of finding the gap for a near
fronto-parallel pose is to find the depth discrepancy which
is a trivial clustering problem when the depth is known. The
depth can be known if multiple calibrated cameras are used
or the entire scene is reconstructed in 3D. These methods
are computationally expensive [4]. In this paper, we propose
a ‘minimalist’ solution to find any arbitrary shaped gap for
the quadrotor to go through using Temporally Stacked Spatial
Parallax (TS2P) algorithm. A control policy based on contour
visual servoing is used to fly through unknown gaps.

II. GAP DETECTION USING TS2P
Before we explain the procedure for gap detection, we need

to formally define the notation used. (aXb,
aY b,

aZb) denotes
the coordinate frame of b represented in the reference of a.
The letters I , C, B and W are used as sub/superscript to
denote quantities related to Inertial Measurement Unit (IMU),
Camera, Body and World respectively. If a sub/superscript is
omitted, the quantity can be assumed to be in W . C and I
are assumed to be rigidly attached to each other with known
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Figure 2. Components of the environment. On-set Image: Quadrotor view of
the scene.
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Figure 3. Representation of co-ordinate frames.

intrinsics and extrinsics. B is defined to be aligned with I
(Fig. 3). A pinhole camera model is used for the formation of
the image. The world point X gets projected onto the image
plane point x.

The camera captures images/frames at a certain frequency.
Let the frame at time ti be denoted as Fi and is called the ith
frame. Optical flow [27] between ith and jth frames is denoted
by j

iṗx which is a sum of both translational
(
j
iṗx,T

)
and

rotational
(
j
iṗx,R

)
components and are given by:

j
iṗx,T =

1

Zx

[
xVz − Vx
yVz − Vy

]
; j
iṗx,R =

[
xy −(1 + x2) y

(1 + y2) −xy −x

]
Ω

where x = [x y]
T denotes the pixel coordinates in the

image plane, Zx is the depth of X (world point corresponding
to pixel x), V = [Vx Vy Vz]

T and Ω are the linear
and angular velocities of the C in W between ti and tj

respectively.
The otherwise complex depth estimation problem can

be trivialized by moving in a certain way [7]. These
“active” vision principles dictate us to control the quadrotor’s
movements so as to make the interpretation of optical flow
easier. Since the quadrotor is a differentially flat system [28],
the rotation about (XB , YB , ZB) or roll, pitch and yaw can
be decoupled. As an implication, the movements can be
controlled in a way to simplify the depth (Zx) estimation
problem. The quadrotor is controlled in such a way that Ω ≈ 0,
Vz � Vx and Vz � Vy , then the optical flow can be modelled
as:

j
iṗx = j

iZx
−1 [− j

iVx − j
iVy
]T

+ η

where η is the approximation error. This shows that using the
aforementioned “active” control strategy, we obtain an implicit
3D structure of the environment in the optical flow. The inverse
depth in this “controlled” case manifests as a linear function
of the optical flow.

The optical flow equation can be written for both foreground
(F) and background (B) pixels independently. The magnitude
of optical flow for F is given by,∥∥∥jiṗx,F∥∥∥

2
= j

iZx,F
−1
√
j

iV
2
x +

j

i
V 2
y + ν

where ν ∼ N (0, σ) is assumed to be an additive white
Gaussian noise and is independent of the scene structure or
the amount of camera movement between two frames (V,Ω).
For such assumptions to be valid, the optical flow algorithm
needs to work well for a wide range of camera movements in
a variety of scene structures. Using fast traditional optical flow
formulations based on methods like [29] or [30] voids such
assumptions. This motivated us to use deep-learning based
flow algorithms which excel at this task while maintaining
a reasonable speed when running on a GPU. In this paper,

i
F

F

B
U

C

Figure 4. Label sets used in tracking. (blue: foreground region, green:
background region, orange: uncertainty region, black line: contour, brighter
part of frame: active region and darker part of frame: inactive region.)

FlowNet2 [31] is used to compute optical flow unless stated
otherwise.

A simple method to reduce noise is to compute the mean of
the flow magnitudes across a few frames. Let ξ = {Fj , ...,Fk}
be a set of N frames from which the optical flow is computed
with respect to some reference frame Fi where the complete
gap is assumed to be visible. Here, N = ξ is the cardinality of
the set ξ. The mean flow magnitude at x for F

(∥∥∥ξiṗx,F∥∥∥
2

)
and B

(∥∥∥ξiṗx,B∥∥∥
2

)
is given by,

∥∥ξ
i
ṗx,F/B

∥∥
2

=
(
NZx,F/B

)−1 k∑
r=j

r
iV + ν′

where ν′ ∼ N
(
0, N−0.5σ

)
and V =

√
V 2
x + V 2

y . Clearly,
the noise varies inversely with N .

Since Zx,F < Zx,B, we can say that
∥∥∥ξiṗx,F∥∥∥

2
>
∥∥∥ξiṗx,B∥∥∥

2
.

Now,
∥∥∥ξiṗx,F∥∥∥

2
−
∥∥∥ξiṗx,B∥∥∥

2
≥ τ can be used as a criterion for

finding possible boundary regions. It was found experimentally

that using inverse flow differences
∥∥∥ξiṗx,B∥∥∥−1

2
−
∥∥∥ξiṗx,F∥∥∥−1

2
≥

τ ′ gave better numerical stability and better noise performance
due to the scale compression by the inverse function. This is
inherently the spatial derivative of inverse average (stacked)

flow magnitudes and it can be written as Ξ = ∇ ·
∥∥∥ξiṗx∥∥∥−1

2
,

where, ∇ = [∂/∂x ∂/∂y]
T . Note that this is the same as

solving the edge detection problem in computer vision and
any kernel or method like the Sobel operator or the Canny
edge detection algorithm can be used.

III. HIGH SPEED GAP TRACKING FOR VISUAL SERVOING
BASED CONTROL

This section presents a targeted solution for tracking a
contour using label sets propagated using Focus of Expansion
(FOE) constraints. A pixel at location x is associated
with a score χ (x) ∈ [−1, 1] which denotes its score as
foreground or background. The foreground and background
pixel locations are defined by F = {x|χ (x) = +1} and
B = {x|χ (x) = −1} respectively.

We define the opening O on the image plane as
O = {x|χ (x) < 0}. The pixel locations which cannot
be perfectly classified as foreground or background belong
to the uncertainty zone and are defined as U =
{x|χ (x) ∈ (−1,+1)}. The contour location is defined as
C = {x|χ (x) = 0}. Fig. 4 gives a visual representation of
the different sets on a sample image.

The problem statement dictates the tracking of contour
location C across time. This problem is hard as the contour
tracking relies on updating χ (x) ∀x ∈ U over time which
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Algorithm 1: Label Set Propagation using FOE
constraints.

Data: CiF ,CiB,Fi,Fj ,F i,Bi
Result: CjF ,C

j
B,F j ,Bj

1 CjF = FeatureTracker
(
CiF ,Fi,Fj

)
;

2 A =
[
CiF,x −1

]
;

3 B =
[
CjF,x − CiF,x

]
;

4

[
α
β

]
= A†B;

5 x0,F = β/α; y0,F =
〈
CjF,y

1

α

(
CjF,y − CiF,y

)〉
;

6 F j = α

[
F ix − x0,F
F iy − y0,F

]
+

[
F ix
F iy

]
;

7 Repeat steps 1 through 6 for B in parallel;

is non-trivial and computationally expensive. To simplify the
problem, we use the dual formulation of the problem which
is to track the pixel locations which belong to the set defined
by {x /∈ U} = F ∪ B. This enables us to track the contour
indirectly at high speeds as corner tracking is comparatively
faster [32]. The trade-off in using the dual formulation is that
we don’t obtain the actual contour location across time - which
might be needed for aggressive maneuvers, but this is not
dealt in the scope of this paper. The label set propagation
algorithm is described in Algorithm 1. Here, CiF and CiB
represents a set of corner/feature points for the foreground and
background pixels respectively in Fi. A† denotes the pseudo
inverse of the matrix A and [x0,F y0,F ]

T is the FOE for the
foreground. Intuitively, we solve the linear equations of the
horizontal flow field to obtain the divergence/time-to-contact
α. The divergence in x-direction is used to also predict the
y-coordinates.

A. Safe Point Computation and Tracking
We can assume that the real-world points corresponding

to the background B ∪ UB are far enough that we can
approximate them to lie on a plane. The foreground points
under consideration F ∪ UF occupy a small area around the
contour which can be assumed to be planar. Here, UF ⊂
U and UB ⊂ U are the sets which actually belong to the
foreground and background respectively.

Now, the quadrotor can be represented as an ellipsoid with
semi-axes of lengths a, b and c. As an implication of the above
assumptions, the projection of the quadrotor on the window
at any instant is an ellipse. Let us define the projection of the
quadrotor on the image as Q. The largest Q can be written
in terms of matrix equation of the ellipse centered at [h, k]

T

defined as Q(h, k,Rθ) = 0.
Here, Rθ is a two-dimensional rotation matrix and θ is the

angle the largest semi-axis of the ellipse makes with the XC

axis. The projection of the quadrotor on the image is given by
Q = {x|Q(x) ≤ 0}. The safe region S can be computed as

S =
⋃
∀θ

O 	Q

where 	 denotes the Minkowski difference of sets. Now, we
define the ‘safest point’ (xs) as the barycentric mean of S.

Remark. The above optimization problem can only be solved
using convex optimization with a guaranteed global solution

d

ba

c

Figure 5. Tracking of F and B across frames. (a) shows tracking when

Ci
F > kF and Ci

B > kB . (b) When Ci
B ≤ kB , the tracking for B will

be reset. (c) When Ci
F ≤ kF , the tracking for F will be reset. (d) shows

tracking only with B, when F = ∅. (blue: F , green: B, yellow: O, yellow
dots: Ci

F , red dots: Ci
B , blue Square: xs,F , red Square: xs,B .)

when both O and Q are convex sets. A conservative solution
to the above problem is fitting the largest scaled version of Q
inside O when O is a non-convex set and Q is a convex set.

Note that as Q is a chosen model, it can always be chosen to
be a convex set, i.e., convex hull of the non-convex set. Also,
from the above remark, the ‘safest point’ (xs) can be defined
as the center of the largest ellipse which can be fit inside S
whilst maintaining the eccentricity equal to that defined by Q.
The optimization problem becomes,

argmax
a,θ

S ∩ Q s.t. Q ⊆ S and |θ| ≤ θmax

This problem can be solved using the procedure described
in [33]. However, a desirable property of the safe region is
that it should favor less-aggressive maneuvers. This can be
modelled as a regularization penalty in the above formulation,

argmax
a,θ

S ∩ Q+ λθ s.t. Q ⊆ S and |θ| ≤ θmax

Solving the above optimization problem is computationally
intensive and not-possible without the prior knowledge of
the scale/depth. For obtaining the minimalist solution, we
assume that the gap is large enough for the quadrotor to
pass through and replace the above optimization problem by
an empirically chosen approximation. A simple and efficient
safe point computation can be performed as the median of the
convex set O and is given by xs ≈ argminx

∑
∀o∈O ‖o−x‖2.

Remark. If the above approximation is used when O is
non-convex, the amount of deviation from the ‘actual’ safe
point is a function of Conv (O)/O. Here Conv (O) is the convex
hull of O.

Keen readers would note that the formulation for the safe
point is in-terms of O which we wanted to avoid tracking
in the first place. Indeed this is true and a simple solution
takes care of this. Because we are propagating F and B with
FOE constraints, the cross-ratios of {‖o, f‖2 |o ∈ O, f ∈ F}
and {‖o, b‖2 |o ∈ O, b ∈ B} are preserved. Here, F and B
are computed from the detected opening O as follows: F =
{O ⊕ ε1 −O ⊕ ε2} and B = {O 	 ε3}. Here, εi is a user
chosen kernel (circular in this paper).
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The F and B are propagated from Fi onwards where the
detection was performed. The ‘safest point’ (xs) is computed
as follows:

xs =

{
xs,F , F ≥ B
xs,B, otherwise

where xs,F and xs,B are the safest points computed
individually for F and B by taking their median respectively.
Fig. 5 shows the tracking of F and B across time and how
the tracking algorithm actively switches between xs,F and
xs,B for the safest point xs. When CiF ≤ kF or CiB ≤ kB,
the tracker/feature points are reset in the current F and B
sets respectively. Here, kF and kB are empirically chosen
thresholds. For all experiments kF = 40 and kB = 20. Due
to resetting and active switching, xs can jump around making
the control hard, hence a simple Kalman filter with a forward
motion model is used to smooth out the value of xs. From
here on, safe point refers to the safest point xs.

B. Control Policy
We propose a control policy such that it follows the tracked

xs. The quadrotor follows the dynamic model as given in
[34]. The controller uses the traditional backstepping approach
based on [34] and contains the following loops: Inner loop and
outer loop controllers. Inner loop controls the attitude stability
while the outer loop controller is responsible for the quadrotor
position. It is important to note that frames are transformed
from C to B.

Since the quadrotor is differentially flat, the altitude ZB
can be controlled independently from XB and YB [28]. The
control policy is to align the projection of the body center
on the image plane with xs. The difference between the two
centers is called the error e. The x and y component of the
error e can be minimized by varying roll (φ) and net thrust
(u1) respectively. A simple Proportional-Integral-Derivative
(PID) controller on e is used. This control policy only deals
with the alignment of B to xs and does not deal with moving
forward (ZC). To move forward, the quadrotor pitch (φ) needs
to be controlled. The rate of forward motion is controlled by
the pitch angle θ0 which is empirically chosen. The bigger
the value of θ0 the faster the quadrotor will fly towards the
gap. It is important to note the implicit assumption made in
this paper that the gap is large enough for the quadrotor to go
through safely.

IV. EXPERIMENTS

A. Experimental Setup
The proposed framework was tested on a modified hobby

quadrotor, Parrot® Bebop 2, for its cost effectiveness and
ease of use. The Bebop 2 is equipped with a front facing
camera, a 9-axis IMU and a downward facing optical flow
sensor coupled with a sonar. The Parrot® Bebop 2 allows
only high level controls in terms of body frame velocities
using ROS. An NVIDIA Jetson TX2 GPU is mounted on
the Bebop 2 as shown in Fig. 6 and is used to run all the
perception and control algorithms onboard. The TX2 and
Bebop 2 communicate via a WiFi connection, where the
images are received at 30Hz. The overall weight of the flight
setup is 680g with the dimensions being 32.8× 38.2× 12cm.

All the experiments were prototyped on a PC running
Ubuntu 16.04 with an Intel® Core i7 6850K 3.6GHz CPU,

2

3

1

Figure 6. The platform used for experiments. (1) The front facing camera,
(2) NVIDIA TX2 CPU+GPU, (3) Downward facing optical flow sensor
(camera+sonar) which is only used for position hold.
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Figure 7. First two rows: (XW , YW ), (YW , ZW ) and (XW , ZW ) Vicon
estimates of the trajectory executed by the quadrotor in different stages (gray
bar indicates the gap). (XW , ZW ) plot shows the diagonal scanning trajectory
(the lines don’t coincide due to drift). Last row: Photo of the quadrotor during
gap traversal. (cyan: detection stage, red: traversal stage.)

an NVIDIA Titan-Xp GPU and 64GB of RAM in MATLAB
using the Robotics Toolbox. The deep learning based optical
flow runs on Python with TensorFlow back-end. All the final
versions of the software were ported to Python to run on the
NVIDIA Jetson TX2 running Linux for Tegra® (L4T) 28.2. A
step-by-step tutorial on using Bebop 2 as a research platform
is available at prg.cs.umd.edu/GapFlyt.html.

The environmental setup for the experiments consists of a
rigid scene which has two near-planar structures, one for the
foreground and the other for the background. As shown in
Fig. 2, let us denote the initial perpendicular distance between
the quadrotor body center and the foreground as 0ZF and the
background as 0ZB. The near-planar structures are made of
foam-core with newspapers stuck on them to add texture to
the scene. The gap is located near the center of the foreground
and is of an arbitrary shape. For the detection of the window,
the quadrotor executes a fixed diagonal straight line trajectory
in the XW − ZW plane as shown in Fig. 7 while taking a
number of images along its path. The number of images used
for the detection stage is a parameter denoted by N . Once
the window is detected, F and B are tracked across time in
order for quadrotor to go through the gap using visual servoing
based control.

B. Experimental Results
The pipeline was evaluated on different variations of the

environmental setup. In the first experiment, we test our

prg.cs.umd.edu/GapFlyt.html
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a b c

d e

Figure 8. Sequence of images of quadrotor going through different shaped gaps. Top on-set: Ξ outputs, bottom on-set: quadrotor view.

Figure 9. Top Row (left to right): Quadrotor view at 0ZF = 1.5, 2.6, 3m
respectively with 0ZB = 5.7m. Bottom Row: Respective Ξ outputs for
N = 4. Observe how the fidelity of Ξ reduces as 0ZF → 0ZB , making
the detection more noisy. (white boxes show the location of the gap in Figs.
9 to 13.)

pipeline on five different arbitrarily shaped gaps as shown in
Fig. 8. Unless otherwise stated 0ZF ∼ 2.6m and 0ZB ∼ 5.7m.
The aim here is to find biases in the detection pipeline. The
windows were chosen to have a diversity in the geometrical
sharpness of the corners, convexity of the shape and the
size. As stated earlier, the only constraint imposed on the
gaps is that they are large enough to go through with the
quadrotor pitch angle close to zero and near-convex. The
outputs of TS2P algorithm for different windows are shown in
Fig. 8 with N = 4 along with their inverse average (stacked)
flow magnitudes Ξ, illustrating that our detection algorithm is
independent of shape and size of the opening. A canny edge
detector is run on Ξ followed by morphological operations to
obtain C.

The second experiment is designed to test the noise
sensitivity of TS2P. The intuition is that as 0ZF → 0ZB,
noisier the detection result . The outputs for different 0ZF
and 0ZB are shown in Fig. 9 when N = 4. This is because
the fidelity of Ξ becomes less and is more prone to noise.
By increasing N the noise gets averaged out across frames
improving the fidelity of Ξ.

In the third experiment, we present detection outputs for
different values of N , image baselines and image sizes. The
effect of N has been already discussed previously. Having a
very small baseline results in effectively dropping the value
of N and vice-versa. The results from different sized images
as illustrated in Fig. 12 show that the detection algorithm can
work even on a very small quadrotor which can only carry a
very low-resolution camera (as low as 32 × 48 pixels). Our

algorithm can also handle dynamic noises very well though
being modelled as a gaussian for the discussion. However, one
can notice that the results improve significantly with increase
in N (Fig. 13) demonstrating the advantage of TS2P.

Gap detection using TS2P almost always results in an
eroded version of the true gap. This is good for safe maneuvers
like the one considered in this paper. However, aggressive
flight algorithms might suffer due to conservative results. This
can be mitigated by tuning the values of image baselines, N
and the trajectory of the quadrotor to obtain minimum erosion
results. Tuning these parameters is easy when a prior about the
scene is known or the flow algorithms are so fast that one can
actively change the detection trajectory so as to maximize the
coverage on the part of the contour least ‘seen’. The dynamic
choice of these parameters comes into the scope of our future
work.

In the last experiment we present alternative approaches
including state-of-the-art methods which can be used to find
the gap. The methods can be subdivided into structure based
approaches and stuctureless approaches. The structure based
approaches can be defined as the set of approaches where
a full 3D reconstruction of the scene is computed, whereas,
stuctureless approaches do not. The structure based approaches
presented are DSO [16] – Direct Sparse Odometry, depth
from hardware stereo cameras [15] and Stereo SLAM –
Simultaneous Localization and mapping using Stereo Cameras
and IMU [15]. The data for the structured approaches were
collected using a Parrot® SLAMDunk [15]. The structureless
approaches presented are MonoDepth [35] – deep learning
based monocular depth estimation and the proposed TS2P
on two different deep learning based dense optical flow
algorithms, namely, FlowNet2 [31], SpyNet [36] and DIS [37].
Table II shows the comparison of the stated methods averaged
over 150 trials.

Fig. 10 compares the results of DSO, stereo depth,
MonoDepth and our method (TS2P) with the ground truth.
It can be inferred that the MonoDepth results are extremely
noisy (even with different models) making it impossible to
detect the gap as the images in our paper were never “seen”
during training. Note that we don’t retrain or finetune any of
the deep learning models in this paper. Retraining MonoDepth
and other deep learning based methods used in this paper on
our dataset might lead to better results. Whereas, DSO and
stereo depth results can used to detect the opening with some
filtering. Stereo SLAM and DSO are slow in the map building
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Figure 10. Comparison of different philosophies to gap detection. Top row
(left to right): DSO, Stereo Depth, MonoDepth, TS2P. Bottom row shows the
detected gap overlayed on the corresponding input image. (green: G ∩ O,
yellow: false negative G ∩ O′, red: false positive G′ ∩ O.)

stage (taking about 6s and 12s respectively), however, once the
map is built and the algorithms are in the localization stage
the depth (or scaled depth) are obtained at 20Hz. The Stereo
SLAM and Stereo Depth were run on the SLAMDunk with
an NVIDIA Jetson TK1 processor which is much slower than
the NVIDIA Jetson TX2 processor used for running DSO and
other methods.

Fig. 11 compares different optical flow methods used
for TS2P. Though SpyNet and DIS optical flow are faster,
FlowNet2 outputs significantly better results at the edges
which is important for obtaining a good gap detection – this
can be observed by looking at Ξ for each algorithm.

After the gap detection has been performed, F and B are
computed from the detected gap C. Fig. 5 shows F and B
being propagated across time as the quadrotor is in pursuit of
going through the gap with the update of xs. A comparison
of tracking using different methods are given in Table III.
Clearly, KLT outperforms all other methods with a theoretical
maximum quadrotor speed of 8 ms−1 in the given scene.
The theoretical maximum speed is calculated for a global
shutter camera in such a way that the motion parallax is
constrained within one pixel for the scene with 0ZF ∼ 2.6m
and 0ZB ∼ 5.7m. The calculation assumes that none of the
tracking/matching methods work when the motion blur is more
than one pixel. However, most of the methods can work well
upto some pixels of motion blur, this will in-turn increase
the theoretical maximum speed by this factor. If a rolling
shutter camera is used without rolling shutter compensation,
the theoretical maximum speed value has to be divided by
the factor of blur caused by rolling shutter. We achieved a
practical maximum speed of 2.5ms−1 in our experiments. We
were limited to this speed due to the acceleration constraints
on the Bebop 2 and the rolling shutter camera.

We achieved a remarkable success rate of 85% over 150
trials for different arbitrary shaped windows under a wide
range of conditions which includes a window with a minimum
tolerance of just 5cm (Fig. 14). Success is defined as window
detection output O having at least 75% overlap with the
ground truth and traversal through the gap without collision.
Failure cases also include the optimization failures and/or
feature tracking failures for structure based approaches. For
TS2P, we define Detection Rate (DR), Average False Negative
(AFN) and Average False Positive (AFP) as follows (AFN and
AFP are computed only for successful trails):

DR =

∑Num. Trails
k=1

(
λkD
)

Num. Trails
;λkD =

(
G ∩ O
G

)k
≥ 0.75

Figure 11. Left Column: Images used to compute Ξ. Middle Column (top to
bottom): Ξ outputs for DIS Flow, SpyNet and FlowNet2. Right Column: Gap
Detection outputs. (green: G ∩ O, yellow: false negative G ∩ O′, red: false
positive G′ ∩ O.

Figure 12. Top row (left to right): Quadrotor view at image sizes of 384×576,
192 × 288, 96 × 144, 48 × 72, 32 × 48. Note all images are re-scaled to
384 × 576 for better viewing. Bottom row shows the respective Ξ outputs
for N = 4.

Figure 13. Top two rows show the input images. The third row shows the Ξ
outputs when only the first 2, 4 and all 8 images are used.

Figure 14. Quadrotor traversing an unknown window with a minimum
tolerance of just 5cm. (red dashed line denotes C.)

AFN =

∑Num. Succ. Trails
k=1

(
λkN
)

Num. Succ. Trails
;λkN =

(
G ∩ O′

G

)k

AFP =

∑Num. Succ. Trails
k=1

(
λkP
)

Num. Succ. Trails
;λkP =

(
G′ ∩ O
G

)k

where A′ is the negation of the set A.
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Table II
COMPARISON OF DIFFERENT METHODS USED FOR GAP DETECTION.
Method Sensor(s) Run Time DR AFN AFP

(Init. Time) in s
DSO [16] Monocular 0.05 (6) 0.88 0.20 0.00
Stereo Depth∗ [15] Stereo 0.10 0.90 0.17 0.04
Stereo SLAM∗ [15] Stereo + IMU 0.05 (12) 0.91 0.15 0.00
Mono Depth [35] Monocular 0.97 0.00 – –
TS2P (FlowNet2 [31]) Monocular 1.00 0.93 0.14 0.02
TS2P (SpyNet [36]) Monocular 0.12 0.74 0.16 0.05
TS2P (DIS [37]) Monocular 0.45 0.62 0.20 0.04

∗ indicates algorithm tested on NVIDIA TK1 otherwise NVIDIA TX2.

Table III
COMPARISON OF DIFFERENT METHODS USED FOR TRACKING.

Method Run Time (ms) Theo. Max. Speed (ms−1)
GMS [38] 40 0.40
FAST [39] + RANSAC 8.3 1.92
Cuda-SIFT [40] + RANSAC 5 3.20
KLT [32] 2 8.00

V. CONCLUSIONS

We present a minimalist philosophy to mimic insect
behaviour to solve complex problems with minimal sensing
and active movement to simplify the problem in hand. This
philosophy was used to develop a method to find an unknown
gap and fly through it using only a monocular camera and
onboard sensing. A comprehensive comparison and analysis
is provided. To our knowledge, this is the first paper which
addresses the problem of gap detection of an unknown shape
and location with a monocular camera and onboard sensing.
As a parting thought, IMU data can be coupled with the
monocular camera to get a scale of the window and plan for
aggressive maneuvers.
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